Rutgers University: Algebra Written Qualifying Exam January 2015: Problem 5 Solution

Exercise. Let $\rho : G \to GL_3(\mathbb{C})$ be a homomorphism, where G is the cyclic group of order 3. Show that with respect to some basis of \mathbb{C}^3 , every element of $\rho(G)$ is a diagonal matrix having cube roots of unity on its diagonal.

Solution. Suppose $G = \{e, a, a^2\}$ and $\rho : G \to GL_3(\mathbb{C})$ is a homomorphism. $\rho(e) = I_3$ $\rho(a^2) = \rho(a)\rho(a)$ $\rho(a) = \rho(a^2 \cdot a^2) = \rho(a^2)\rho(a^2) = [\rho(a)]^4$ $I_3 = \rho(e) = \rho(a^3) = \rho(a)\rho(a^2) = [\rho(a)]^3 = [\rho(a^2)]^3$ $A^{3} = [\rho(a)]^{3} = \rho(a^{3}) = \rho(e) = I_{3}$ If $\rho(a) = A$ then $A^3 - I_3 = 0$ $p_A(x) = (x-q)(x-\omega)(x-\omega^2)$ where ω is the cube root of unity Looking at the Jordan canonical form of $A, A = PJP^{-1}$ has eigenvalues $1, \omega, \omega^2$ $J = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^2 \end{bmatrix}$ $J^{2} = \begin{vmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^{2} \end{vmatrix} \begin{vmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^{2} \end{vmatrix}$ $A^2 = P J^2 P^{-1}$ and $= \begin{bmatrix} 1 & 0 & 0 \\ 0 & \omega^2 & 0 \\ 0 & 0 & \omega \end{bmatrix}$ $\implies PJ^{3}P^{-1} = I_{3}$ $\rho(a) = PJP^{-1} \qquad \rho(a^{2}) = PJ^{2}P^{-1}$ and $J^3 = I_3$ So, $\rho(e) = PI_3P^{-1}$ Similar matrices represent the same matrix under 2 bases $\implies \rho(e) = I_3 \qquad \rho(a) = J \qquad \rho(a^2) = J^2$ with respect to some basis of \mathbb{C}^3 \implies The elements of $\rho(G)$ are diagonal matrices having cube roots of unity on its diagonal.