Rutgers University: Algebra Written Qualifying Exam

January 2015: Problem 5 Solution

Exercise. Let $\rho: G \rightarrow G L_{3}(\mathbb{C})$ be a homomorphism, where G is the cyclic group of order 3. Show that with respect to some basis of \mathbb{C}^{3}, every element of $\rho(G)$ is a diagonal matrix having cube roots of unity on its diagonal.

Solution.

Suppose $G=\left\{e, a, a^{2}\right\}$ and $\rho: G \rightarrow G L_{3}(\mathbb{C})$ is a homomorphism.

$$
\begin{aligned}
\rho(e) & =I_{3} \\
\rho\left(a^{2}\right) & =\rho(a) \rho(a) \\
\rho(a) & =\rho\left(a^{2} \cdot a^{2}\right)=\rho\left(a^{2}\right) \rho\left(a^{2}\right)=[\rho(a)]^{4} \\
\text { If } \rho(a)=A \text { then } \quad I_{3} & =\rho(e)=\rho\left(a^{3}\right)=\rho(a) \rho\left(a^{2}\right)=[\rho(a)]^{3}=\left[\rho\left(a^{2}\right)\right]^{3} \\
\Longrightarrow \quad A^{3} & =[\rho(a)]^{3}=\rho\left(a^{3}\right)=\rho(e)=I_{3} \\
\Longrightarrow \quad A^{3}-I_{3} & =0 \\
\Longrightarrow \quad p_{A}(x) & =(x-q)(x-\omega)\left(x-\omega^{2}\right) \text { where } \omega \text { is the cube root of unity }
\end{aligned}
$$

Looking at the Jordan canonical form of $A, A=P J P^{-1}$ has eigenvalues $1, \omega, \omega^{2}$

$$
\left.\left.\begin{array}{rlrl}
J & =\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega & 0 \\
0 & 0 & \omega^{2}
\end{array}\right] & & J^{2}
\end{array} \begin{array}{rlrl}
A^{2} & =P J^{2} P^{-1} & & \text { and } \\
& & =\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega & 0 \\
0 & 0 & \omega^{2}
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & \omega^{2} & 0 \\
0 & 0 & \omega
\end{array}\right] \\
0 & 0 & \omega^{2}
\end{array}\right]\right)
$$

Similar matrices represent the same matrix under 2 bases

$$
\Longrightarrow \rho(e)=I_{3} \quad \rho(a)=J \quad \rho\left(a^{2}\right)=J^{2} \quad \text { with respect to some basis of } \mathbb{C}^{3}
$$

\Longrightarrow The elements of $\rho(G)$ are diagonal matrices having cube roots of unity on its diagonal.

